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Chromyl chloride 1, a classic oxidizing agent, reacts vigorously

with alkenes, even at78 °C.! Hydrolysis of the amorphous product
mixture yields epoxide and numerous side products including

Table 1. Chromyl Chloride Plus Ethylene Reaction Energetics,
Relative to Chromyl Chloride and Ethylene?

1+2 1+2

- . ) o ) 1+2 1+2 CrCLO 1+2 —4  —5 CrClLO 7
chlorohydrins and dichlorides. Cis diols, produced by the isovalent method —4 —3 +EQ —% 3+27TS drectTS +EQ ~ 7 —8TS
osmium _tetromde and per_rnanganate, are _not_ opsérv‘ékﬂe T 13 _3 36 3 2 21 51 4
observation of chromyl chloride ethylene epoxidation is in seeming spwore -1 18 32 12 18 34 -35 -22 18
conflict with the fact that the reaction is endothermic by 26 kcal/ BLYP 5 23 3 15 20 35 -39 -21 17
mol in the gas phaseEurther, the most stable species on the DFT oo 414 % > s 0 4 -0 u
the gas p - . * SP , HCTH147 -5 22 26 7 22 3% 37 - 2
potential surfackcan only logically produce diol upon hydrolysis.  BaLyp  -27 18 9 -16 18 21 —43 -41 12
The experimental nonobservation of diol product, along with the %SPTZ —11 22 2? s 5 ) 4 1
preference fo.r epOX|d.at.|on rgther than allylic OXIda'[IOI’],. makes ", 11 11 3 9 12 10 9 21 20
chromyl chloride reactivity unique and worth understanding. ZPE+AH 3 3 1 3 2 2 2 5 2

In 1977 Sharpless, Teranishi, andcReall* proposed that alkene,
2, epoxidation by chromyl chloride proceeds through &22
pathway, forming an oxetane intermediaBe,which reductively
eliminates the observed epoxide, eq 1.

akcal/mol P Vosko, S. H.; Wilk, L.; Nusair, MCan. J. Phys198Q 58,
1200.¢ Slater, J. CPhys. Re. 1951, 81, 385.9 Becke, A. D.Phys. Re. A
1988 38, 3098-3100.¢ Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson
K. A.; Pederson, M. R.; Fiolhais, ®hys. Re. B 1992 46, 6671-6687.
fLee, C.; Yang, W.; Parr, R. ®hys. Re. B 1988 37, 785-789.9 Perdew,

0 O cH, J. P.; Burke, K.; Ernzerhof, MPhys. Re. Lett. 1996 77, 3865-3868.
Clv-,»Cr\ﬁ + CH,=CH, — cp;'c( “CH, (1) "Boese, A. D.; Doltsinis, N. L.; Handy, N. C.; Sprik, M. Chem. Phys.
ey O 2 Cl" 4 200Q 112 1670-1678.' Becke, A. D.J. Chem. Phys1993 98, 5648-

5652.

This was proposed as an alternative to the classic Criegi€e 3
oxo pathway, eq 2, yielding the dioxylaté, which is consistent
with diol production, not epoxide formation.

an independent reference polAThe results are provided in Table

1. CASPT2 predicts an epoxidation endothermicity consistent with
the upper experimental estimate and predicts the oxetane species,
3, to be endothermic, and the dioxylat,exothermic.

0 O~CH, . . .
CloOf,  + CH=CH, — ol;c( EHZ @) The only species below reactants on the potential surface is the
¢y o 2 ", 07 experimentally unobservedl Addition of zero-point effects and

statistical thermodynamics does not change this conclusion for
A third possibility is the external attack of olefin to directly form  CASPT2, see Table 1. Comparison of columns 6 and 7 confirm
a complexed epoxide, eq 3. Sharpless, Teranishi, andcRaall ~ the previou$ computational conclusion that the-2 pathway is
properly reasoned that this pathway should be disfavored as it energetically favored over direct approach of olefin; formation of
represents a nucleophilic attack on the olefin by an electrophilic the unobserved dioxylatd, appears to be inevitable.

compound. If epoxidation is significantly endothermic, how can chromyl
o chloride function as a vigorous epoxidizing agent? The answer to
cn-c('o v CHeCH, — - op-/-cé" thls_guestlon can be extracted from the str_ucture of the_dlrect

ca” o cl 0\7(3”2 ®) addition saddlepoint). Rather than a conventional symmetric or
1 2 5 Ch near-symmetric approach of the olefin toward the oxygen, we find

) ) ] ) the saddlepoint to be quite asymmeffcconsistent with the
Energetic results for these intermediates using a range of gjectronic rearrangement of ed%.

electronic structure methodologies are collected in Tabfe 1.

Focusing on rows 46 of Table 1, it is clear that all density

functional and hybrid methods do not give the same results.

Formation of the dioxylate intermediaté, ranges from being 27
kcal/mol exothermic (B3LYP) to being 5 kcal/mol endothermic
(BLYP). All functionals, except LDA, find formation of the oxetane
species3, to be significantly endothermic. All functionals studied,
except B3LYP, yield an epoxidation endothermicity roughly
consistent with the upper experimental estinfatdl. functionals,
except LDA, find the barrier for the-82 reaction betweeth and

2 to be greater than 15 kcal/mol.

0 .0 al CIP
CI"-Crf . Cl-Cr/ eld
c” E)\ — o oM e c” “0—CH, 4
~CH, 6 ‘. -CH: 5 \/
CH; CH;, CH,

Although computed to be not competitive with thet3
pathway!8 this direct, carbocationic addition saddlepoint led us to
suspect that the key to chromyl chloride epoxidation was a
stabilization of 6. However, neither CPCM continuum dichlo-
romethane solvatidfnor explicit carbon tetrachloride coordination
to the carbocationic center lowered the barrier significantly (less

Because there is no experimental data on the stability of any of than 2 kcal/mol impact).
the proposed intermediates, we have used the complete active space An alternative to carbocation stabilization is stabilization of the
perturbation theory to second order (CASPT2) approach to obtain chromate portion 06 by the delocalization of the negative charge
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over a second equivalent of chromyl chloride. As presented in Table
1, column 8, reacting 2 equiv of chromyl chloride with ethylene to
form CrCl,O3 plus epoxide is exothermic. Inclusion of the
unfavorable three-body entropic term still yields an exoergic
process. Further, merely docking a chromyl chloride adjacent to
the dioxylate intermediate4, leads spontaneously to a nearly
trigonal bipyramidal dioxylate structure, that is energetically
favored, column 9 of Table 1, see eq 5.

CH
(o} /N2
O\CH 1 O CH,
ohcf  + Choi [F - o f0=g-0 (5)
c” o cl” 0-CHe cl E
1 4 7 Clci

This adduct structure is connected to a dimeric epoxide adduct,
8, through a low barrier, column 10 of Table 1, see eq 6.

CH, CH,
7 O CH, ?  d—cH,
wCrod 4 Cr 1 (6)
CE( 9{ — o/ So-cr=0
7 Cigl Cl g ad

We have also found a dimeric saddlepoint with the carbocationic
center adjacent to a chloride, a pathway consistent with the
formation of chlorohydrins. This zwitterionic modes, is also
consistent with the matrix observatiSmof aldehyde, which is likely
formed through a carbocationic rearrangement. The model is also
consistent with the observation of a Cr(V) ESR signal for the
product of reacting chromyl chloride with aryl alkefkand the
2:1 metal-to-alkene product stoichiometry.

In summary, the epoxidation of alkenes by chromyl chloride,
whether through a -82 pathway, a direct addition pathway, or
possibly even through at2 pathway, is thermodynamically driven
by the formation of a dimeric Cr(V) product.
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